Software Evolution

via

Hierar chical Hypergraphs with Flexible Coverage

WOLFRAM KAHL
Institut fir Softwaretechnologie-akult@at fur Informatik
Universitatder BundeswehMiinchen D-85577Neubibeg
kahl@ist.unibw-muenchen.de

Abstract

We presenta simple abstract approad to the use of hi-
erarchical hypegraphsin softwae evolution. Borrowing
ideasfrom graph transformationand attribute grammas,
we showhow thesehypegraphscan be usedin a flexible
wayto coverall or part of a softwae developmenprocess.

This unifying framevork allows to designa setof tools
basedon commondata structuesand representationsand
applicableto diversetasksandsettings.

1 Intr oduction

Whena pieceof “software” evolveswith full formal sup-
port, thisimpliesthatfor all componentshatbelongto that
pieceof software,suchas

e domainknowledge(ideally in the shapeof formalthe-
ories),

e requirements,
e userdocumentation,
e designdecisionsandtheir motivations,
e designdocumentationand
e “sourcecode”,
we have thefollowing:

e theformal supportis aware of thesecomponentand
their structureand

e theformal supportis awareof all kindsof relationsbe-
tweenthesecomponentsjdown to arbitraryconstituent
levels.

Furthermoreto supporta moreabstractview on evolution,
we needthat

e theformal supportis awareof differentversionsof the
systemandof therelationsbetweerthem.

Thereforeto theformal supportthewholesystentogether
with its history and variationsappearsasa single, though
highly structuredhypegraph

However, it will berareto have full formal supportfor
thewholeof the softwaredevelopmeniprocessUsually, al-
readythe availability of semi-formalapproximationgo the
full hypegraphof formal supportwill be considerecasan
improvementin the process.Furthermore sometimedor-
mal supportneedso be addedonly laterin the processpn
anexisting system for examplein re-engineeringprojects.
There,it will usually not be possibleto derive the whole
hypegraphfrom a given systemstate(repository)without
expensve humaninteraction,sincefrequentlytherelations
that have to be representedn the hypegraphare not ob-
vious from the systemstate. For example,it may be (for-
mally) undecidablevhich requirementspecificatioror do-
main knowledgeformula is reflectedin a specificdesign
decision.Therefore,

e this hypegraphwill be incrementallyconstructedas
oneactiity of thedevelopmenprocessamongothers,
and

e thishypegraphwill have to be maintainedalongwith
the systenrepresentatiomr better

e this hypegraphwill have to be viewed as being the
systemrepresentationgvenif mary edgesare “miss-

ing”.
Toolsthataid maintenancef sucha hypegraphwould be

easieito implementf no partof thewholesystenrepresen-
tationcouldbechangedvithoutawarenessf theimpacton

the hypegraphstructure. That approachhowever, would
imply almostzerointeroperability andmay alsobe a seri-
ousimpedimento scalability

Externaltools,and,to acertaindegree distributeddevel-
opmentwill alwaysat leastlocally andtemporarilydestrgy
thehypegraphstructure.

In orderto dealwith all thesefacetof softwareevolution
reality, we proposeaformalismof hierarchical hypegraphs
with flexible coverage.

2 Hierarchical Hypergraphs with Flexible
Coverage

We proposea hypegraphformalismusinghierarchicahy-
pemgraphsalongthe lines of the “higraphs” of Tourlas[1].
Thereforewe first introducethese'higraphs”,andthenex-
plain how we instantiatethis definitionfor our purposes.

Therearemary waysto approachhedefinitionof graphs
and hypegraphs,and also mary ways to specify graph
transformations.Becauseof the high level of abstraction
andgeneralityapproachebasedn cateyorytheoryarevery
prominent,andthe basictechniquef the caatgorical ap-
proachto graphtransformatiorarewell-establisheéndac-
cepted.

In categyory theory thereis one particularly simpleand
usefulapproacho whatturnsoutto beavery corventional
definition of graphs: One startsby defining a catggory G
with two objectsandtwo non-identicalmorphisms postu-
lationgonly the catgyory equations:

S
E V

DN
A graphis then a functor from this categyory G into the
catgyory Setof setsandtotal functionsbetweensets. This
meansthatfor every graphG; thereare

e avertex setV;,
e anedgesetE;,

e atotal functions; : E; — V;, whichis understoodo
associatevery edgewith its sourcevertex, and

e atotal functiont; : E; — V; which associatesvery
edgewith its target vertex.

Fromthe definitionsof cateyjoriesandfunctorsoneobtains
a natural definition of graphhomomorphismgas natural
transformationsdetweenfunctors). Generaltheory about
setvaluedfunctorsthenimmediatelyproducesa wealth of
resultsaboutthis category of graphs.

Vertex and edgelabellingsmay be addedby extending
the basecategyory with additionalobjectsfor the label sets,
andlabellingmorphismsthusobtaininga category GL:

A S TN A
L—FF v
Nt~

All thisis well-established.

Ly

Now we come to the idea behind the “higraphs” of
Tourlas[1], which is in fact extremely simple: Use the
above settingwith basecategory G, but replacethe cate-
gory Setof setsandtotal functionsbetweensetswith the
catgyory PO of partially-orderedsetsand orderhomomor
phisms(i.e., monotonictotal functions)betweerthem.

Thus, every higraph consistsof the samefour compo-
nentsasa graph, but the sourceand target functionsnow
have to be monotonic: wheneer two edgese;, es : Ey in
a higraph H, arerelatedby the edgeordering,i.e., when
we have e; <g es, thentheincidentverticeshave to be
relatedby the vertex ordering,i.e., we also needto have
80(61) <v 80(62) andto(el) <y to(ez).

Tourlasusesthesegraphsmostnotablyfor representing
statechartswith their hierarchicalktatetransitiondiagrams
andtheiredgesatandbetweerdifferentlevelsin the hierar
chy.

Thisapproactevencarriesoverto thelabelledcasewith-
out problems:We thenjust needorderpreservindabelling
functions. A particularlysimpleinstancemight, for exam-
ple, usethe trivial identity orderingon the edgelabel set;
this thenimpliesthatwhenerere; <g e,, thentheirlabels
conincide:\g(e1) = Ag(e2).

This already shavs that this approachto hierarchical
graphsis quiteflexible. We now proposea hypeigraphfor-
malismwhich is an instanceof edge-labellechigraphsin
thefollowing way:

e Nodesrepresentasicitems of the systemrepresen-
tation, suchas formulae, naturallanguagesentences,
sourcecodestatements.

e Subsystemsare,for simplicity, consideredasthe sets
of nodesthey contain. Suchsubsystemsre goingto
be usedastheverticesof our higraphs.

e Edgeswill behyperedgeswith a non-zeronumberof
tentaclesattachedo them;insteadof just two tentacle
roles“source”and“target” we admitanarbitrarynum-
ber of tentaclerbles,and correspondinglyexpandthe
numberof morphismsetweeredgesetandvertex set.
Sincethesetentaclerdleswill haveto beinterpretedas
total monotonicfunctions,we may chosesemptysub-
sustemsastargetsfor rdleswheretheserdlesare not
applicableto theedgein question..

e Edgeswill be labelled, sometimesjust with roles,
sometime®.g. with in additionformal proofsthates-
tablishtherelationassertedby the edge.

On thesehypergraphs transformationgndtransitionsare
definedasfollows:

e Coveringtransitionsaddedgesin a way thatroughly
correspondgo calculation of attributes in attribute
grammarsConsiderthefollowing asanexample:As-
sumethat a certainsectionof the specificationhasa
“relevance”edgeto a certainsectionof theuserdocu-
mentation:

C,

/™ /2
%L S.Ln S21 Sz,n

S§,1,'1"S§,1,n §,1,1 'S§,1,n
then:

— A “relevance”edgewill be introducedbetween
thechapters:ontainingthosesections:

“““‘.‘.§
g‘ relevant / \%
N0
reTevan é/ \%
S§ 11" 1,1 % 1,n

This mayhapperautomatically

— Edgesmaybeintroducedetweersubsectionsr
formulaein the specificationand subsectionsn
the userdocumentation'

. TS Ly ‘
\5 relevant / \g
\'SZ 1

\“

reevan “‘g %
S§11 S%ln ‘S\ 11 %,1,n

\\\ relevant &

This mayneedhumanassistance.

e Transfertransitionsaddedgesn a similar way to re-
latenew versionsof partsof the systemwith therestof
the system.Part of this maybe automatedandhuman
assistancenay be neededn certaincasesasin most
versionmanagemergystems.

e Lossytransitionsremove edgesn responseéo changes
to a part of the systemthat cannotbe assuredo have
presered the propertiesrepresentedy thoseedges.
For example,manualediting of any documentwill in
mary caseslestry (or markasunreliable)mostedges
incidentwith thatdocument.

e Transformationshangethe structureof somepart of
the system,andmay addanddeletenodesandedges.
(Thefactthatsomepartof thestructurds derivedfrom

atransformatiorwill usuallyberecordedn appropri-
ateedgegesultingin “self-covering” transformations.)
Transformationgan sene the mostdiversepurposes,
andhigherdegreeof formality in thedevelopmentwill
usuallyinvolve a higherpercentagef transformations
in theprocess.

Formally, transitionswill usually be describedby total
single-pushoutules,while transformationsvill essentially
be corventionaldouble-pushoutules.

On sucha hypegraphrepresentin@g systemstate,sev-
eralpredicatewill bedefined suchas:

P1: thehypegraphcoversthewholesystenrepresentation
(no coveringor transfertransitionscanbe applied)

P2: the hypegraphcovers the whole representatiorof a
specificversion

P3: the hypegraphcoversall relationsbetweentwo spe-
cific versions

P4: thehypegraphdemonstratethat,in aspecificversion,
a specificsetof requirementss fulfilled by theimple-
mentation

P5: thehypegraphdemonstratethat,in aspecificversion,
a specificsetof requirementss reflectedin the user
documentation

3 How and why canthis formalism be usedto
provide tool support for evolution?

As documentedy the examplesgiven above, a hierarchi-
cal hypegraphis a universalframenork thatcanbe usedto
represenanddocumentery differentkindsof relationsbe-
tweenvery differentpartsandaspect®of the system.Some
partsof the system,e.g. UML diagramsor finite-statema-
chinesmayevenbedirectlyencodedissub-hypegraphsn
the sameformalism.

Thefactthata singleformal modelstandsbehindall as-
pectsof the systemstructuremalkesit easyto developa co-
herenttool setof tools containingspecialfunctionality for
specialaspectof the system,or for specialaspectdor the
interactionwith the hypegraphstructure:

e Visualisatiormaybeunified,andwill automaticallybe
availableatall levelsof thehierarchy

e Closuretools will have different derivation compo-
nentsfor correctnesgroofs than for documentation
coveragechecks.

e Derivation tools may have different instancesfor
different kinds of diagrams and different target
paradigms.

Althougha unified approachs taken, thereis no necessity
to usea uniquetool, aslong asthe differenttools operate
on the sameformal modelandwith compatiblerepresenta-
tions.

Sincenot all of the desirablepredicateqe.g.,P1) need
to hold all the time during development,tools cannotrely
on suchassumptionseither so thereis a certain built-in
robustnessn our approach.In particularthe possibility to
have partsof the systemloosingtheir connectionswith the
restof the systemor startingtheir existencein suchaniso-
latedstate js thekey to interoperabilitywith othertoolsthat
arenot awareof the hypegraphstructure put only operate
on certain(setsof) nodes. Someexternal tools may still
provide somecertainkinds of to relevantstructurethis can
thenbe usedby hypegraphtools e.g. to automateat least
certaincoverageprocesses.

4 For which aspectf software evolution can
this formalism provide support?

Sinceour formalismis essentiallya meta-formalismit can
beusedfor all kindsof softwareevolutionandin all partsof
the softwaredevelopmentprocessaslong astools with the
relevantadditionalcapabilitiesareavailable.

It is of coursepossibleo encodeaventheformulaeof the
requirementspecificatiorashypeigraphsandsimilarly the
“source-code”of software products,and have hypegraph
transformationdor the completedevelopment,proof, and
maintenanceprocess. However, this will probablybe the
exception.

More or lessat the other extreme, it is also concev-
ablethatare-engineeringrojectstartsoutwith justnodes,
namelythe existing sourcecode and documentationand
progressiely addsedgesasrelationsbetweendocumenta-
tion andsourcecodearediscovered,andaddsnodesasnen
documentareadded.

5 Items for Discussion

Insteadof a conclusion et usraisea few pointsthatmight
deserediscussion:

e In our examplesedgesangefrom the “soft”, suchas
documentatiorcoverage,to the “hard”, suchasdoc-
umentingtransformatiorstepsandformal correctness
proofs. | would considerthis asanadvantagesinceit
givesuserdflexibility with respecto thedegreeof for-
mal supportthey wish to seeintegratedinto their pro-
cess.Since"hard” edgesareusuallyaccessibléo au-

tomaticproof-checkingools,predicatesssertingon-
sisteny of proof-carryingsubgraphsnay be defined
andchecledautomatically

Would amorerigoroussupportof consisteng blendin
equallywell with a potentiallymixedenvironment?

e In the implementationof tools for our hypegraphs,
edgeswill exist outsidethelinkeddocumentsemploy-
ing addressingnechanismsuchase.g. XLink. Are
thereotherobvious candidategor standardisedepre-
sentations?

e Fine-graineddistributed locking will be necessaryo
minimise conflicts betweenconcurrentapplicationof
hypegraph-avaretools— is this consideregroblem-
atic?

e \We mentionedthe possibility to storeformal correct-
nessproofsin edgeqa variantwould beto storethem
asnodesandjustlink themvia edges)— would other
ways of linking in externaltheoremproversbe more
attractve?

References

[1] K. Tourlas. Towardsthe principled designof diagramsin
computingandsoftwareengineeringslidesfrom a talk given
in Birmingham on 27th October2000, Oct. 2000. URL:
http://www.dcs.ed.ac.uk/home/kxt/birminghadup.ps.gz.

