
SoftwareEvolution
via

Hierar chical Hypergraphs with Flexible Coverage

WOLFRAM KAHL

Institut für Softwaretechnologie,Fakulẗat für Informatik
UniversiẗatderBundeswehrMünchen,D-85577Neubiberg

kahl@ist.unibw-muenchen.de

Abstract

We presenta simple, abstract approach to the useof hi-
erarchical hypergraphsin software evolution. Borrowing
ideasfrom graph transformationand attribute grammars,
we showhow thesehypergraphscan be usedin a flexible
wayto coverall or part of a software developmentprocess.

This unifying framework allows to designa setof tools
basedon commondatastructuresandrepresentationsand
applicableto diversetasksandsettings.

1 Intr oduction

Whena pieceof “software” evolveswith full formal sup-
port, this impliesthatfor all componentsthatbelongto that
pieceof software,suchas

� domainknowledge(ideally in theshapeof formal the-
ories),

� requirements,

� userdocumentation,

� designdecisionsandtheirmotivations,

� designdocumentation,and

� “sourcecode”,

wehave thefollowing:

� the formal supportis awareof thesecomponentsand
their structure,and

� theformalsupportis awareof all kindsof relationsbe-
tweenthesecomponents,down to arbitraryconstituent
levels.

Furthermore,to supporta moreabstractview on evolution,
weneedthat

� theformal supportis awareof differentversionsof the
systemandof therelationsbetweenthem.

Therefore,to theformalsupport,thewholesystemtogether
with its history andvariationsappearsasa single, though
highly structured,hypergraph.

However, it will be rareto have full formal supportfor
thewholeof thesoftwaredevelopmentprocess.Usually, al-
readytheavailability of semi-formalapproximationsto the
full hypergraphof formal supportwill beconsideredasan
improvementin the process.Furthermore,sometimesfor-
mal supportneedsto beaddedonly later in theprocess,on
anexisting system,for examplein re-engineeringprojects.
There,it will usually not be possibleto derive the whole
hypergraphfrom a given systemstate(repository)without
expensive humaninteraction,sincefrequentlytherelations
that have to be representedin the hypergrapharenot ob-
vious from the systemstate. For example,it may be (for-
mally) undecidablewhichrequirementsspecificationor do-
main knowledgeformula is reflectedin a specificdesign
decision.Therefore,

� this hypergraphwill be incrementallyconstructedas
oneactivity of thedevelopmentprocessamongothers,
and

� this hypergraphwill have to bemaintainedalongwith
thesystemrepresentation,or better,

� this hypergraphwill have to be viewed as being the
systemrepresentation,even if many edgesare“miss-
ing”.

Tools thataid maintenanceof sucha hypergraphwould be
easierto implementif nopartof thewholesystemrepresen-
tationcouldbechangedwithoutawarenessof theimpacton

the hypergraphstructure. That approach,however, would
imply almostzerointeroperability, andmayalsobea seri-
ousimpedimentto scalability.

Externaltools,and,to acertaindegree,distributeddevel-
opmentwill alwaysat leastlocally andtemporarilydestroy
thehypergraphstructure.

In orderto dealwith all thesefacetsof softwareevolution
reality, weproposeaformalismof hierarchicalhypergraphs
with flexiblecoverage.

2 Hierar chical Hypergraphs with Flexible
Coverage

We proposea hypergraphformalismusinghierarchicalhy-
pergraphsalongthe lines of the “higraphs” of Tourlas[1].
Therefore,wefirst introducethese“higraphs”,andthenex-
plainhow we instantiatethisdefinitionfor ourpurposes.

Therearemany waysto approachthedefinitionof graphs
and hypergraphs,and also many ways to specify graph
transformations.Becauseof the high level of abstraction
andgenerality, approachesbasedin categorytheoryarevery
prominent,andthebasictechniquesof thecaategoricalap-
proachto graphtransformationarewell-establishedandac-
cepted.

In category theory, thereis oneparticularlysimpleand
usefulapproachto whatturnsout to bea very conventional
definition of graphs:Onestartsby defininga category

�
with two objectsandtwo non-identicalmorphisms,postu-
lationgonly thecategoryequations:

E V
s

t

A graph is then a functor from this category
�

into the
category Setof setsandtotal functionsbetweensets.This
means,thatfor everygraph��� thereare

� avertex set ��� ,
� anedgeset ��� ,
� a total function 	
������������ , which is understoodto

associateeveryedgewith its sourcevertex, and

� a total function ��������������� which associatesevery
edgewith its target vertex.

Fromthedefinitionsof categoriesandfunctorsoneobtains
a naturaldefinition of graphhomomorphisms(as natural
transformationsbetweenfunctors). Generaltheory about
set-valuedfunctorsthenimmediatelyproducesa wealthof
resultsaboutthis categoryof graphs.

Vertex andedgelabellingsmay be addedby extending
thebasecategory with additionalobjectsfor the labelsets,
andlabellingmorphisms,thusobtainingacategory

���
:

E V
s

t
LE LV

λE λV

All this is well-established.

Now we come to the idea behind the “higraphs” of
Tourlas [1], which is in fact extremely simple: Use the
above settingwith basecategory

�
, but replacethe cate-

gory Setof setsand total functionsbetweensetswith the
category PO of partially-orderedsetsandorderhomomor-
phisms(i.e.,monotonictotal functions)betweenthem.

Thus, every higraphconsistsof the samefour compo-
nentsasa graph,but the sourceand target functionsnow
have to be monotonic:whenever two edges�������! "�#�%$ in
a higraph &'$ are relatedby the edgeordering,i.e., when
we have ���)(�*+�� , then the incident verticeshave to be
relatedby the vertex ordering, i.e., we also needto have
	
$-,.���0/�(12	
$-,.�� !/ and �3$4,.���5/%(�16�3$-,.�� !/ .

Tourlasusesthesegraphsmostnotablyfor representing
statecharts,with their hierarchicalstatetransitiondiagrams
andtheiredgesatandbetweendifferentlevelsin thehierar-
chy.

Thisapproachevencarriesoverto thelabelledcasewith-
out problems:We thenjust needorder-preservinglabelling
functions. A particularlysimpleinstancemight, for exam-
ple, usethe trivial identity orderingon the edgelabel set;
this thenimpliesthatwhenever � � (�*7� , thentheir labels
conincide: 8 * ,.� � /:9;8 * ,<� / .

This alreadyshows that this approachto hierarchical
graphsis quiteflexible. We now proposea hypergraphfor-
malism which is an instanceof edge-labelledhigraphsin
thefollowing way:

� Nodesrepresentbasic items of the systemrepresen-
tation, suchas formulae,naturallanguagesentences,
sourcecodestatements.

� Subsystemsare,for simplicity, consideredasthe sets
of nodesthey contain. Suchsubsystemsaregoing to
beusedastheverticesof ourhigraphs.

� Edgeswill behyper-edgeswith a non-zeronumberof
tentaclesattachedto them;insteadof just two tentacle
rôles“source”and“target” weadmitanarbitrarynum-
ber of tentaclerôles,andcorrespondinglyexpandthe
numberof morphismsbetweenedgesetandvertex set.
Sincethesetentaclerôleswill haveto beinterpretedas
total monotonicfunctions,we maychosesemptysub-
sustemsastargetsfor rôleswheretheserôlesarenot
applicableto theedgein question..

� Edgeswill be labelled, sometimesjust with rôles,
sometimese.g.with in additionformal proofsthates-
tablishtherelationassertedby theedge.

2

On thesehyper-graphs,transformationsandtransitionsare
definedasfollows:

� Covering transitionsaddedgesin a way that roughly
correspondsto calculation of attributes in attribute
grammars.Considerthefollowing asanexample:As-
sumethat a certainsectionof the specificationhasa
“relevance”edgeto a certainsectionof theuserdocu-
mentation:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

then:

– A “relevance”edgewill be introducedbetween
thechapterscontainingthosesections:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

relevant

This mayhappenautomatically.

– Edgesmaybeintroducedbetweensubsectionsor
formulaein the specificationandsubsectionsin
theuserdocumentation:

...

C1

S1,1 S1,n

...SS1,1,1 SS1,1,n

...

C2

S2,1 S2,n

...SS2,1,1 SS2,1,n

relevant

relevant

relevant

This mayneedhumanassistance.

� Transfertransitionsaddedgesin a similar way to re-
latenew versionsof partsof thesystemwith therestof
thesystem.Partof this maybeautomated,andhuman
assistancemay be neededin certaincasesas in most
versionmanagementsystems.

� Lossytransitionsremoveedgesin responseto changes
to a partof the systemthat cannotbe assuredto have
preserved the propertiesrepresentedby thoseedges.
For example,manualeditingof any documentwill in
many casesdestroy (or markasunreliable)mostedges
incidentwith thatdocument.

� Transformationschangethe structureof somepart of
thesystem,andmayaddanddeletenodesandedges.
(Thefactthatsomepartof thestructureis derivedfrom

a transformationwill usuallyberecordedin appropri-
ateedgesresultingin “self-covering” transformations.)
Transformationscanserve the mostdiversepurposes,
andhigherdegreeof formality in thedevelopmentwill
usuallyinvolveahigherpercentageof transformations
in theprocess.

Formally, transitionswill usually be describedby total
single-pushoutrules,while transformationswill essentially
beconventionaldouble-pushoutrules.

On sucha hypergraphrepresentinga systemstate,sev-
eralpredicateswill bedefined,suchas:

P1: thehypergraphcoversthewholesystemrepresentation
(nocoveringor transfertransitionscanbeapplied)

P2: the hypergraphcovers the whole representationof a
specificversion

P3: the hypergraphcoversall relationsbetweentwo spe-
cific versions

P4: thehypergraphdemonstratesthat,in aspecificversion,
a specificsetof requirementsis fulfilled by theimple-
mentation

P5: thehypergraphdemonstratesthat,in aspecificversion,
a specificsetof requirementsis reflectedin the user
documentation

...

3 How and why canthis formalism beusedto
provide tool support for evolution?

As documentedby the examplesgiven above, a hierarchi-
calhypergraphis a universalframework thatcanbeusedto
representanddocumentverydifferentkindsof relationsbe-
tweenvery differentpartsandaspectsof thesystem.Some
partsof thesystem,e.g. UML diagramsor finite-statema-
chines,mayevenbedirectlyencodedassub-hypergraphsin
thesameformalism.

Thefactthata singleformal modelstandsbehindall as-
pectsof thesystemstructuremakesit easyto developa co-
herenttool setof tools containingspecialfunctionality for
specialaspectsof thesystem,or for specialaspectsfor the
interactionwith thehypergraphstructure:

� Visualisationmaybeunified,andwill automaticallybe
availableatall levelsof thehierarchy.

� Closure tools will have different derivation compo-
nentsfor correctnessproofs than for documentation
coveragechecks.

3

� Derivation tools may have different instancesfor
different kinds of diagrams and different target
paradigms.

Althougha unifiedapproachis taken, thereis no necessity
to usea uniquetool, aslong asthe differenttools operate
on thesameformal modelandwith compatiblerepresenta-
tions.

Sincenot all of the desirablepredicates(e.g.,P1) need
to hold all the time during development,tools cannotrely
on suchassumptions,either, so thereis a certainbuilt-in
robustnessin our approach.In particularthe possibility to
have partsof thesystemloosingtheir connectionswith the
restof thesystem,or startingtheir existencein suchaniso-
latedstate,is thekey to interoperabilitywith othertoolsthat
arenot awareof thehypergraphstructure,but only operate
on certain(setsof) nodes. Someexternal tools may still
providesomecertainkindsof to relevantstructure;this can
thenbe usedby hypergraphtools e.g. to automateat least
certaincoverageprocesses.

4 For which aspectsof softwareevolution can
this formalism provide support?

Sinceour formalismis essentiallya meta-formalism,it can
beusedfor all kindsof softwareevolutionandin all partsof
thesoftwaredevelopmentprocessaslong astoolswith the
relevantadditionalcapabilitiesareavailable.

It is of coursepossibleto encodeeventheformulaeof the
requirementsspecificationashypergraphs,andsimilarly the
“source-code”of softwareproducts,andhave hypergraph
transformationsfor the completedevelopment,proof, and
maintenanceprocess.However, this will probablybe the
exception.

More or less at the other extreme, it is also conceiv-
ablethata re-engineeringprojectstartsout with just nodes,
namely the existing sourcecodeand documentation,and
progressively addsedgesasrelationsbetweendocumenta-
tion andsourcecodearediscovered,andaddsnodesasnew
documentsareadded.

5 Items for Discussion

Insteadof a conclusion,let usraisea few pointsthatmight
deservediscussion:

� In our examples,edgesrangefrom the“soft”, suchas
documentationcoverage,to the “hard”, suchasdoc-
umentingtransformationstepsandformal correctness
proofs. I would considerthis asanadvantage,sinceit
givesusersflexibility with respectto thedegreeof for-
mal supportthey wish to seeintegratedinto their pro-
cess.Since“hard” edgesareusuallyaccessibleto au-

tomaticproof-checkingtools,predicatesassertingcon-
sistency of proof-carryingsubgraphsmay be defined
andcheckedautomatically.

Wouldamorerigoroussupportof consistency blendin
equallywell with a potentiallymixedenvironment?

� In the implementationof tools for our hypergraphs,
edgeswill exist outsidethelinkeddocuments,employ-
ing addressingmechanismssuchase.g. XLink. Are
thereotherobviouscandidatesfor standardisedrepre-
sentations?

� Fine-graineddistributed locking will be necessaryto
minimiseconflictsbetweenconcurrentapplicationof
hypergraph-awaretools— is thisconsideredproblem-
atic?

� We mentionedthe possibility to storeformal correct-
nessproofsin edges(a variantwould beto storethem
asnodesandjust link themvia edges)— would other
waysof linking in external theoremproversbe more
attractive?

References

[1] K. Tourlas. Towards the principled designof diagramsin
computingandsoftwareengineering.slidesfrom a talk given
in Birmingham on 27th October2000, Oct. 2000. URL:
http://www.dcs.ed.ac.uk/home/kxt/birmingham4up.ps.gz.

4

